

NASA Orion Spacecraft

Crew and Service Modules Development and Production Cost Estimate

Joel Castaneda
Stuart Mcclung
April-lyn McDaniel

Outline

- Orion Spacecraft Overview
- Estimating Ground Rules / Assumptions
- Exploration Flight Test-1 vs Exploration Mission Complexity
- Estimating Methodology
 - Development Phase
 - Production Phase
- Estimate Cross-Check

Orion Spacecraft

- Orion is America's next generation spacecraft that will take astronauts to exciting destinations never explored by humans
- Serves as the exploration vehicle
 - To carry crew to distant planetary bodies
 - Provide emergency abort capability
 - Sustain the crew during space travel
 - Provide safe re-entry from deep space

Orion Crew and Service Module

Estimating Ground Rules / Assumptions

Development

- Structures
 - Design and verification of all Crew Module (CM) and Service Module (SM) primary and secondary structure
 - Does not include European Space Agency (ESA) provided structures
- Mechanisms
 - Design, verification and pre-delivery testing of all CM, SM and Launch Abort System (LAS) mechanical components
 - Does not include European Space Agency (ESA) provided mechanisms

Production

- Structures
 - Work associated with fabrication of structural elements and delivery to Assembly, Test & Launch Operations (ATLO)
 - CM Pressure Vessel (PV) component procurements
 - Welding operations and PV testing
 - SM panel fabrication
 - Secondary structure
- Mechanisms
 - Fabrication and assembly work prior to delivery to ATLO

EFT-1 vs. EM Complexity

- Exploration Mission (EM) vehicle's structural design scope comparable to Exploration Flight Test-1 (EFT-1) vehicle
 - Leveraging EFT-1 secondary structure work
 - Leveraging EFT-1 testing processes
 - EM primary structure needs to meet higher abort loads
 - Modifying cone assemblies to reduce welds
 - Optimizing mass
- EM vehicle's mechanisms design scope comparable to EFT-1 vehicle
 - Similar number of components
 - Expect some efficiencies/learning gained from EFT-1 experience
 - Expect efficiencies/learning in testing and lab utilization
 - Incorporation of abort loads results in comparable testing scope but need to meet higher thresholds
 - Incorporation of functional hatches adds scope

Development Estimating Methodology (Part 1)

- Driven by EFT-1 development actuals
 - Used total development phase historical values
 - Considered effort performed by prime contractor and subcontractors
 - Management Level-of-Effort (LOE) included in dataset
- Calculated overall average Hours per Drawing factor for both Structures and Mechanisms
 - Collected final drawing count
 - Drawing revisions taken into consideration

Development Estimating Methodology (Part 2)

- ❖ Assessed mix of development effort across 3 types of engineering work
 - Categories
 - A Non-drawing design and development work; model and prep work performed prior to CAD work
 - B True CAD drawing release effort
 - C Test, Assembly and Verification
 - Weightings based on NASA Subject Matter Experts (SME) experience and observation during EFT-1 timeframe
 - Weightings extensively cross-checked against historical NASA programs and validated
 - Subjectively derived mix of categories different to reflect subtleties between Structures and Mechanisms

	Structures	<u>Mechanisms</u>
Α	35%	50%
В	15%	20%
C	50%	30%

Adjusted Hours per Drawing factor to reflect any learning or change in complexity relative to EFT-1

Retention and Release Mechanism Example: Reducing # of CM to SM Attachment Points

 $(0.80 \times 50\%) + (0.80 \times 20\%) + (1.20 \times 30\%) = 0.92 \text{ Hrs/Dwg Factor Adjustment}$

Development Estimating Methodology (Part 3)

- Applied Hours per Drawing factor adjustment to forecasted number of drawings for each system
- Defense Contract Management Agency (DCMA) approved labor rates applied to projected development hours to obtain development labor cost
- Development material costs estimated using wrap factor derived from historical EFT-1 actuals

Development Estimating Methodology (Part 4)

- Total development cost estimates phased using latest Integrated Master Schedule (IMS)
 - Phasing reflected SME anticipated mixture of development work for each vehicle build
 - 1. EM-1 (un-crewed mission)
 - 2. Structural Test Article (STA)
 - 3. Ascent Abort-2 (AA-2)
 - 4. EM-2 (crewed mission)
 - Phasing considers some parallel effort but primarily exhibited maturing development work over time

Production Estimating Methodology

- Production estimate utilized parametric estimating techniques
 - Final EFT-1 Master Equipment List (MEL) used to determine mass allocations for each system
 - EFT-1 historical total production cost and mass data used to derive a separate cost per mass Cost Estimating Relationship (CER) for Structures and Mechanisms
 - Production material costs embedded in CER
- Applied SME-provided scaling factors to take credit for EFT-1 experience or projected manufacturing process improvements and change in complexity
- Latest EM forecasted system-level mass dataset applied to product of CER and scaling factors to obtain production costs
- Total production cost estimates phased using latest IMS

EFT-1 vs. NASA History

Estimate Cross-Check

- ❖ Independent NASA cost estimator provided cross-check
- Parametric model generated to validate estimates
 - Utilized SEER-H cost estimating software
 - Reflected same development and production scope
 - Used same MEL / mass dataset
 - Applied same labor rates
- ❖ Independent cross-check results within 15% of estimate

Summary

- ❖ EFT-1 historical data suitable foundation for building EM cost estimate
- Hours per Drawing factor adjusted to reflect actual mix of Orion development work as well as changes in complexity to calculate development cost
- Validated production CERs adjusted to reflect learning and complexity from previous build to calculate production cost
- Cross-check parametric model results show reasonable delta

